organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[2-Chloro-5-(trifluoromethyl)phenyl]hexahydropyrimidine monohydrate

Hoong-Kun Fun* and Reza Kia‡

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 19 August 2008; accepted 23 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.064; wR factor = 0.145; data-to-parameter ratio = 19.3.

The molecule of the title compound, $C_{11}H_{12}ClF_3N_2 \cdot H_2O$, is a substituted hexahydropyrimidine. There are two crystallographically independent molecules (A and B) and two water molecules in the asymmetric unit of the title compound. Intermolecular C–H···Cl (\times 2), C–H···F, and C–H···N $(\times 2)$ hydrogen bonds generate S(5) ring motifs. The dihedral angle between the two benzene rings is 8.17 $(11)^{\circ}$. The F atoms in molecule B are disordered over four positions with refined site-occupancies of ca 0.35/0.19/0.29/0.17 for the four components. In the crystal structure, molecules are arranged into one-dimensional extended chains along the c axis and are further stacked along the a axis by directed four-membered $O-H \cdots O-H$ interactions, forming two-dimensional networks parallel to the ac plane. The short distances between the centroids of the benzene rings (3.8002–3.8327 Å) indicate the existence of π - π interactions. In addition, the crystal structure is further stabilized by $N-H \cdots O$, $O-H \cdots N$ (× 4), N-H···Cl and C-H···O (\times 2) hydrogen-bonding interactions.

Related literature

For bond-length data, see: Allen *et al.* (1987). For hydrogenbond motifs, see: Bernstein *et al.* (1995). For ring conformations, see: Cremer & Pople (1975). For related literature and properties, see, for example: Riebsomer & Morey (1950); Finch *et al.* (1952); Drandarov *et al.* (1999); Siddiqui *et al.* (1999); Horvath (1997); Katritzky *et al.* (2002).

Experimental

Crystal data

 $C_{11}H_{12}CIF_{3}N_{2}\cdot H_{2}O$ $M_{r} = 282.69$ Monoclinic, $P2_{1}/c$ a = 7.0745 (2) Å b = 18.6119 (5) Å c = 19.0631 (5) Å $\beta = 91.010$ (2)°

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.924, T_{max} = 0.992$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.145$ S = 1.087308 reflections 379 parameters 41 restraints Z = 8 Mo K α radiation μ = 0.33 mm⁻¹ T = 100.0 (1) K 0.24 × 0.05 × 0.02 mm

 $V = 2509.65 (12) \text{ Å}^3$

30107 measured reflections 7308 independent reflections 4995 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.052$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1A - H1NA \cdots O1W^{i}$	0.90 (3)	2.07 (4)	2.885 (3)	151 (3)
$N1B - H1NB \cdot \cdot \cdot Cl1A^{ii}$	0.89 (3)	2.76 (3)	3.595 (2)	156 (2)
$N2B - H2NB \cdots O2W$	0.84 (3)	2.18 (4)	2.969 (3)	156 (3)
$O1W - H1W1 \cdots N2B^{iii}$	0.86 (4)	1.95 (4)	2.815 (3)	174 (4)
$O1W - H2W1 \cdots N2A^{iv}$	0.87 (4)	2.02 (3)	2.867 (3)	165 (3)
$O2W - H1W2 \cdots N1B^{v}$	0.83 (3)	2.09 (3)	2.891 (3)	161 (3)
$O2W-H2W2\cdots N1A^{vi}$	0.87 (4)	1.98 (4)	2.844 (3)	176 (4)
$C2A - H2AA \cdots O2W$	0.93	2.35	3.249 (3)	164
$C5A - H5AA \cdots F1A$	0.93	2.42	2.747 (3)	100
$C5A - H5AA \cdots N1A$	0.93	2.52	2.835 (3)	100
$C7A - H7AA \cdots Cl1A$	0.98	2.67	3.076 (3)	105
$C2B - H2BA \cdots O1W^{iv}$	0.93	2.52	3.414 (3)	162
$C5B-H5BA\cdots N2B$	0.93	2.53	2.838 (3)	100
$C7B - H7BA \cdots Cl1B$	0.98	2.68	3.070 (3)	104

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1; (v) x - 1, y, z; (vi) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used

[‡] Additional correspondance author, e-mail: zsrkk@yahoo.com.

to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2619).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Drandarov, K., Guggisberg, A. & Hesse, M. (1999). Helv. Chim. Acta, 82, 229–234.
- Finch, H., Peterson, E. A. & Ballard, S. A. (1952). J. Am. Chem. Soc. 74, 2016– 2021.
- Horvath, D. (1997). J. Med. Chem. 40, 2412-2418.
- Katritzky, A. R., Singh, S. K. & He, H.-Y. (2002). J. Org. Chem. 67, 3115-3117.
- Riebsomer, J. L. & Morey, G. H. (1950). J Org. Chem. 15, 245-248.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, A. Q., Merson-Davies, L. & Cullis, P. M. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3243–3248.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, o1840-o1841 [doi:10.1107/S1600536808027232]

2-[2-Chloro-5-(trifluoromethyl)phenyl]hexahydropyrimidine monohydrate

H.-K. Fun and R. Kia

Comment

Hexahydropyrimidines are prepared classically by condensations of substituted propane-1,3-diamines with aldehydes and ketones. Hexahydropyrimidines are biologically important. *N*,*N*'-Bisalkylhexahydro pyrimidines are effective against Ehrlich carcinoma, LK lymphoma, and Staphylococcus aureus. The hexahydropyrimidine skeleton occurs in alkaloids such as verbamethine and verbametrine. *N*-Substituted hexahydropyrimidines are synthetic intermediates for recently discovered spermidine-nitroimidazole drugs for the treatment of A549 lung carcinoma and structural units in new trypanothione reductase inhibiting ligands for the regulation of oxidative stress in parasitic cells. Benzo-fused hexahydropyrimidines or 1,2,3,4-tetrahydroquinazolines are potential *R*-adrenergic blockers and possess antiplatelet activity.

In the title compound (I) (Fig. 1), intramolecular C—H···Cl (x 2), C—H···F, and C—H···N (x 2) hydrogen bonds generate S(5) ring motifs (Bernstein *et al.*, 1995). The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). There are two crystallographically independent molecules (A, and B) and two water molecules in the asymmetric unit of the title compound. The dihedral angle between the two benzene rings is 8.17 (11)°. The pyrimidine rings in molecules A and B adopt chair conformation with the puckering parameter (Cremer & Pople, 1975) Q=0.603 (3)°; θ =1.2 (3)°; φ =31 (9)° for ring A and Q=0.601 (3)°; θ =2.5 (3)°; φ =48 (6)° for ring B. The CF₃ fragment in molecule B, was disordered over four positions with the refined site-occupancies of 0.351 (7)/0.189 (5)/0.289 (9)/0.168 (6) for these four components, respectively. In the crystal structure, molecules are arranged into 1-D extended chains along the *c*-axis and are further stacked along the *a*-axis by directed four-membered O—H···O—H interactions to form 2-D networks which is paralell to *ac*-plane. The short distances between the centroids of the benzene rings prove an existence of π - π interactions with distances of 3.8002–3.8327 Å. In addition, the crystal structure is further stabilized by N—H···O, O—H···N (*x* 4), N—H···Cl, and C—H···O (*x* 2) hydrogen bonding interactions.

Experimental

The title compound was synthesized based on the previous method (Finch *et al.*, 1952). Single crystals suitable for *X*-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

H atoms bound to the N atoms and water molecules were initially found from the difference Fourier map and refined freely with the parent atoms. The rest of the hydrogen atoms were positioned geometrically and refined as riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$. The disordered fluorine atoms of the CF₃ fragment in molecule B were refined isotropically using C—F bonds distance restraint of 1.300 (5). Their displacement parameters were restrained using rigid bond model.

Figures

Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. For clarity, only hydrogen atoms of the water molecules and those H atoms involved in intramolecular and intermolecular interactions (shown as dashed lines) were drawn. Open bonds indicate the minor disordered component.

Fig. 2. The crystal packing of the major component of (I), viewed down the a-axis, showing 1-D extended chains along the c-axis and stacking of these chains along the a-axis. Intra and intermolecular interactions are shown as dashed lines.

Fig. 3. The crystal structure of the major component of (I), showing 1-D extended chains along the *a*-axis.

2-[2-Chloro-5-(trifluoromethyl)phenyl]hexahydropyrimidine monohydrate

Crystal data	
$C_{11}H_{12}Cl_1F_3N_2 \cdot H_2O_1$	$F_{000} = 1168$
$M_r = 282.69$	$D_{\rm x} = 1.496 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6400 reflections
<i>a</i> = 7.0745 (2) Å	$\theta = 2.4 - 23.0^{\circ}$
<i>b</i> = 18.6119 (5) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 19.0631 (5) Å	T = 100.0 (1) K
$\beta = 91.010 \ (2)^{\circ}$	Block, colourless
$V = 2509.65 (12) \text{ Å}^3$	$0.24\times0.05\times0.02~mm$
Z = 8	

Bruker SMART APEXII CCD area-detector diffractometer	7308 independent reflections
Radiation source: fine-focus sealed tube	4995 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.053$
T = 100.0(1) K	$\theta_{\text{max}} = 30.1^{\circ}$

φ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -9 \rightarrow 9$
$T_{\min} = 0.924, \ T_{\max} = 0.992$	$k = -26 \rightarrow 20$
30107 measured reflections	$l = -16 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 3.5237P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{max} < 0.001$
7308 reflections	$\Delta \rho_{max} = 0.61 \text{ e} \text{ Å}^{-3}$
379 parameters	$\Delta \rho_{min} = -0.60 \text{ e } \text{\AA}^{-3}$
41 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cl1A	0.20441 (9)	0.10260 (4)	0.33890 (4)	0.02426 (16)	
F1A	0.1451 (3)	0.40379 (9)	0.52585 (9)	0.0364 (4)	
F2A	0.0671 (3)	0.44306 (10)	0.42408 (11)	0.0431 (5)	
F3A	0.3579 (2)	0.43149 (10)	0.45284 (10)	0.0382 (5)	
N1A	0.0590 (3)	0.15070 (12)	0.56007 (12)	0.0182 (5)	
N2A	0.3521 (3)	0.10898 (12)	0.51715 (12)	0.0182 (5)	
C1A	0.1928 (3)	0.18840 (15)	0.37603 (14)	0.0195 (5)	
C2A	0.2034 (3)	0.24683 (16)	0.33062 (14)	0.0226 (6)	
H2AA	0.2129	0.2397	0.2825	0.027*	
C3A	0.1998 (3)	0.31528 (16)	0.35780 (14)	0.0227 (6)	

НЗАА	0.2056	0.3548	0.3280	0.027*	
C4A	0.1874 (3)	0.32524 (14)	0.42968 (14)	0.0193 (5)	
C5A	0.1752 (3)	0.26648 (14)	0.47436 (14)	0.0169 (5)	
H5AA	0.1667	0.2739	0.5224	0.020*	
C6A	0.1758 (3)	0.19653 (14)	0.44817 (13)	0.0163 (5)	
C7A	0.1603 (3)	0.13238 (14)	0.49649 (13)	0.0176 (5)	
H7AA	0.0946	0.0932	0.4719	0.021*	
C8A	0.0401 (4)	0.08749 (15)	0.60549 (14)	0.0234 (6)	
H8AA	-0.0277	0.0498	0.5805	0.028*	
H8AB	-0.0309	0.1000	0.6468	0.028*	
C9A	0.2355 (4)	0.06120 (16)	0.62705 (15)	0.0246 (6)	
H9AA	0.2249	0.0184	0.6558	0.030*	
H9AB	0.3003	0.0979	0.6545	0.030*	
C10A	0.3474 (4)	0.04425 (15)	0.56176 (15)	0.0240 (6)	
H10A	0.4751	0.0300	0.5749	0.029*	
H10B	0.2883	0.0049	0.5362	0.029*	
C11A	0.1886 (4)	0.40020 (15)	0.45793 (15)	0.0224 (6)	
Cl1B	0.70385 (9)	0.13065 (3)	0.38275 (3)	0.02102 (15)	
C11B	0.6923 (5)	0.43786 (17)	0.29294 (17)	0.0364 (8)	
F4	0.5910 (12)	0.4539 (3)	0.2403 (5)	0.0226 (12)*	0.351 (7)
F5	0.6856 (18)	0.4849 (5)	0.3431 (5)	0.0241 (10)*	0.351 (7)
F6	0.8935 (10)	0.4523 (3)	0.2682 (4)	0.0163 (15)*	0.351 (7)
F4B	0.7521 (16)	0.4863 (4)	0.3361 (5)	0.0226 (12)*	0.189 (5)
F5B	0.716 (2)	0.4505 (6)	0.2289 (7)	0.041 (4)*	0.189 (5)
F6B	0.4747 (12)	0.4605 (4)	0.2919 (6)	0.021 (2)*	0.189 (5)
F4C	0.8220 (14)	0.4554 (3)	0.2541 (5)	0.025 (2)*	0.288 (9)
F5C	0.6978 (15)	0.4818 (5)	0.3569 (5)	0.0241 (10)*	0.288 (9)
F6C	0.5245 (14)	0.4566 (3)	0.2635 (5)	0.027 (2)*	0.288 (9)
F4D	0.639 (2)	0.4462 (6)	0.2155 (8)	0.0226 (12)*	0.167 (6)
F5D	0.619 (2)	0.4824 (6)	0.3297 (7)	0.0241 (10)*	0.167 (6)
F6D	0.866 (2)	0.4612 (8)	0.2826 (8)	0.029 (4)*	0.167 (6)
N1B	0.8534 (3)	0.15394 (12)	0.20979 (12)	0.0178 (5)	
N2B	0.5654 (3)	0.20191 (12)	0.16508 (12)	0.0189 (5)	
C1B	0.6915 (3)	0.21978 (14)	0.35477 (14)	0.0183 (5)	
C2B	0.6998 (3)	0.27234 (15)	0.40623 (14)	0.0200 (5)	
H2BA	0.7062	0.2599	0.4535	0.024*	
C3B	0.6985 (4)	0.34360 (15)	0.38604 (15)	0.0230 (6)	
H3BA	0.7045	0.3797	0.4197	0.028*	
C4B	0.6883 (4)	0.36098 (15)	0.31531 (15)	0.0226 (6)	
C5B	0.6763 (3)	0.30779 (14)	0.26472 (14)	0.0204 (5)	
H5BA	0.6687	0.3205	0.2176	0.024*	
C6B	0.6756 (3)	0.23534 (14)	0.28350 (13)	0.0167 (5)	
C7B	0.6615 (3)	0.17660 (14)	0.22863 (14)	0.0181 (5)	
H7BA	0.5927	0.1355	0.2477	0.022*	
C8B	0.8473 (4)	0.09305 (15)	0.16030 (15)	0.0241 (6)	
H8BA	0.7840	0.0524	0.1814	0.029*	
H8BB	0.9748	0.0785	0.1488	0.029*	
C9B	0.7411 (4)	0.11657 (15)	0.09448 (15)	0.0243 (6)	
H9BA	0.8109	0.1544	0.0714	0.029*	

H9BB	0.7294	0.0764	0.0623	0.029*
C10B	0.5465 (4)	0.14364 (15)	0.11302 (16)	0.0251 (6)
H10C	0.4817	0.1613	0.0712	0.030*
H10D	0.4723	0.1047	0.1322	0.030*
O1W	0.3328 (3)	0.80736 (12)	0.43314 (11)	0.0258 (5)
O2W	0.1595 (3)	0.24257 (12)	0.16075 (11)	0.0240 (4)
H1NA	-0.054 (5)	0.1675 (17)	0.5461 (17)	0.034 (9)*
H2NA	0.410 (5)	0.0988 (19)	0.478 (2)	0.046 (11)*
H1NB	0.908 (4)	0.1397 (17)	0.2501 (17)	0.029 (9)*
H2NB	0.457 (5)	0.2150 (17)	0.1772 (16)	0.028 (8)*
H1W1	0.370 (5)	0.777 (2)	0.402 (2)	0.053 (12)*
H2W1	0.440 (5)	0.8277 (19)	0.4430 (18)	0.037 (10)*
H1W2	0.056 (5)	0.2231 (18)	0.1680 (18)	0.035 (9)*
H2W2	0.131 (5)	0.277 (2)	0.1315 (19)	0.043 (11)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1A	0.0223 (3)	0.0306 (4)	0.0199 (3)	0.0021 (3)	-0.0001 (2)	-0.0072 (3)
F1A	0.0535 (11)	0.0211 (9)	0.0352 (11)	0.0018 (8)	0.0155 (9)	-0.0009 (8)
F2A	0.0460 (11)	0.0220 (10)	0.0606 (14)	0.0058 (8)	-0.0230 (10)	0.0078 (9)
F3A	0.0254 (9)	0.0295 (10)	0.0599 (13)	-0.0107 (7)	0.0116 (8)	-0.0090 (9)
N1A	0.0174 (10)	0.0182 (12)	0.0192 (11)	0.0007 (8)	0.0042 (8)	0.0018 (9)
N2A	0.0168 (10)	0.0200 (12)	0.0180 (12)	0.0028 (8)	0.0025 (8)	0.0027 (9)
C1A	0.0153 (11)	0.0243 (14)	0.0188 (13)	-0.0012 (10)	-0.0013 (9)	-0.0022 (11)
C2A	0.0179 (12)	0.0352 (17)	0.0146 (13)	-0.0008 (11)	0.0013 (10)	0.0029 (12)
C3A	0.0185 (12)	0.0286 (16)	0.0209 (14)	-0.0020 (10)	-0.0018 (10)	0.0100 (12)
C4A	0.0142 (11)	0.0205 (14)	0.0232 (14)	-0.0007 (9)	-0.0007 (10)	0.0047 (11)
C5A	0.0152 (11)	0.0205 (14)	0.0150 (12)	-0.0008 (9)	0.0007 (9)	0.0005 (10)
C6A	0.0141 (11)	0.0192 (13)	0.0155 (12)	-0.0020 (9)	-0.0013 (9)	0.0005 (10)
C7A	0.0169 (11)	0.0180 (13)	0.0179 (13)	-0.0004 (9)	0.0000 (9)	-0.0033 (11)
C8A	0.0277 (13)	0.0231 (15)	0.0197 (14)	-0.0025 (11)	0.0076 (11)	0.0024 (11)
C9A	0.0332 (14)	0.0208 (14)	0.0199 (14)	0.0039 (11)	0.0027 (11)	0.0056 (11)
C10A	0.0282 (14)	0.0174 (14)	0.0264 (15)	0.0069 (11)	0.0008 (11)	0.0043 (11)
C11A	0.0185 (12)	0.0246 (15)	0.0242 (15)	-0.0010 (10)	-0.0002 (10)	0.0064 (12)
Cl1B	0.0223 (3)	0.0196 (3)	0.0212 (3)	0.0010 (2)	0.0028 (2)	0.0060 (3)
C11B	0.057 (2)	0.0221 (16)	0.0300 (18)	0.0024 (14)	-0.0009 (15)	-0.0044 (14)
N1B	0.0179 (10)	0.0163 (11)	0.0191 (12)	0.0035 (8)	0.0014 (9)	0.0031 (9)
N2B	0.0137 (10)	0.0225 (12)	0.0204 (12)	0.0015 (8)	0.0005 (8)	0.0015 (9)
C1B	0.0144 (11)	0.0186 (13)	0.0221 (14)	0.0010 (9)	0.0028 (10)	0.0033 (11)
C2B	0.0157 (11)	0.0246 (15)	0.0197 (14)	0.0009 (10)	0.0025 (10)	-0.0001 (11)
C3B	0.0201 (12)	0.0236 (15)	0.0253 (15)	0.0010 (10)	0.0020 (10)	-0.0045 (12)
C4B	0.0202 (12)	0.0185 (14)	0.0293 (15)	0.0012 (10)	0.0018 (11)	0.0016 (12)
C5B	0.0204 (12)	0.0203 (14)	0.0204 (14)	0.0002 (10)	0.0026 (10)	0.0035 (11)
C6B	0.0132 (11)	0.0175 (13)	0.0196 (13)	0.0000 (9)	0.0034 (9)	0.0007 (10)
C7B	0.0165 (11)	0.0182 (13)	0.0199 (13)	-0.0008 (9)	0.0034 (10)	0.0031 (11)
C8B	0.0299 (14)	0.0160 (14)	0.0263 (15)	0.0040 (11)	-0.0001 (11)	-0.0012 (11)
C9B	0.0321 (14)	0.0205 (15)	0.0203 (14)	0.0019 (11)	-0.0006 (11)	-0.0025 (11)

C10B	0.0264 (14)	0.0219 (15)	0.0270 (15)	-0.0039(11)	-0.0040(11)	-0.0010(12)	
O1W O2W	0.0178(9)	0.0318(12)	0.0279(11)	0.0000 (8)	0.0029 (8)	-0.0099(10)	
02w	0.0183 (9)	0.0300 (12)	0.0236 (11)	-0.0010 (8)	0.0003 (8)	0.0074 (9)	
C	(8.0)						
Geometric paran	neters (A, °)						
Cl1A—C1A		1.749 (3)	C11B	—F5	1.29	8 (10)	
F1A—C11A		1.338 (3)	C11B	—F6D	1.32	3 (16)	
F2A—C11A		1.331 (3)	C11B	—F6C	1.35	0 (8)	
F3A—C11A		1.337 (3)	C11B	—F5C	1.46	7 (10)	
N1A—C7A		1.459 (3)	C11B	—C4B	1.49	3 (4)	
N1A—C8A		1.468 (3)	C11B	—F4D	1.52	5 (14)	
N1A—H1NA		0.90 (3)	C11B	—F6	1.53	2 (7)	
N2A—C7A		1.472 (3)	N1B-	—С7В	1.47	2 (3)	
N2A—C10A		1.475 (3)	N1B-	C8B	1.47	5 (3)	
N2A—H2NA		0.88 (4)	N1B-	-H1NB	0.89	(3)	
C1A—C6A		1.391 (4)	N2B-	—С7В	1.45	7 (3)	
C1A—C2A		1.393 (4)	N2B-	C10B	1.47	5 (4)	
C2A—C3A		1.376 (4)	N2B-	-H2NB	0.84	(3)	
C2A—H2AA		0.9300	C1B-	–C2B	1.38	6 (4)	
C3A—C4A		1.387 (4)	C1B-	-С6В	1.39	2 (4)	
СЗА—НЗАА		0.9300	C2B-	СЗВ	1.381 (4)		
C4A—C5A		1.390 (4)	C2B-	-H2BA	0.9300		
C4A—C11A		1.495 (4)	C3B-	–C4B	1.387 (4)		
C5A—C6A		1.394 (4)	C3B-	-H3BA	0.9300		
С5А—Н5АА		0.9300	C4B-	С5В	1.38	4 (4)	
C6A—C7A		1.513 (4)	C5B-	-С6В	1.39	5 (4)	
С7А—Н7АА		0.9800	C5B-	–H5BA	0.93	00	
C8A—C9A		1.516 (4)	C6B-	—С7В	1.51	5 (4)	
C8A—H8AA		0.9700	С7В-	–H7BA	0.98	00	
C8A—H8AB		0.9700	C8B-	-С9В	1.51	6 (4)	
C9A-C10A		1.520 (4)	C8B-	-H8BA	0.97	00	
С9А—Н9АА		0.9700	C8B-	C8B—H8BB 0.9700			
С9А—Н9АВ		0.9700	C9B-	C10B	1.51	4 (4)	
C10A—H10A		0.9700	C9B-	-H9BA	0.97	00	
C10A—H10B		0.9700	C9B-	–H9BB	0.97	00	
Cl1B—C1B		1.744 (3)	C10B	—H10C	0.97	00	
C11B—F5D		1.209 (11)	C10B	—H10D	0.97	00	
C11B—F4C		1.233 (8)	O1W-	-H1W1	0.86	(4)	
C11B—F5B		1.257 (13)	O1W-	—H2W1	0.87	(4)	
C11B—F4		1.258 (6)	O2W-	—H1W2	0.83	(4)	
C11B—F4B		1.287 (5)	O2W-	—H2W2	0.87	(4)	
C7A—N1A—C8A	A	110.7 (2)	F4—0	C11B—F5C	122.	5 (6)	
C7A—N1A—H1N	NA	107 (2)	F4B—	-C11B-F5C	22.3	(6)	
C8A—N1A—H11	NA	111 (2)	F5—C	C11B—F5C	9.3 (7)	
C7A—N2A—C10)A	111.5 (2)	F6D-	C11BF5C	86.0	(9)	
C7A—N2A—H2N	NA	106 (2)	F6C-	-C11B-F5C	102.	102.2 (6)	
C10A—N2A—H2	2NA	109 (2)	F5D—	C11BC4B	118.	8 (6)	
C6A—C1A—C2A	A	122.4 (2)	F4C—	-C11BC4B	116.	3 (4)	

C6A—C1A—Cl1A	120.3 (2)	F5B-C11B-C4B	117.4 (6)
C2A—C1A—Cl1A	117.2 (2)	F4—C11B—C4B	116.2 (3)
C3A—C2A—C1A	119.2 (2)	F4B—C11B—C4B	119.7 (5)
СЗА—С2А—Н2АА	120.4	F5—C11B—C4B	115.7 (5)
C1A—C2A—H2AA	120.4	F6D-C11B-C4B	112.3 (7)
C2A—C3A—C4A	119.8 (3)	F6C—C11B—C4B	110.3 (4)
С2А—С3А—НЗАА	120.1	F5CC11BC4B	107.3 (5)
С4А—С3А—НЗАА	120.1	F5D-C11B-F4D	113.0 (8)
C3A—C4A—C5A	120.4 (3)	F4C	64.3 (7)
C3A—C4A—C11A	118.7 (2)	F5B—C11B—F4D	22.4 (7)
C5A—C4A—C11A	120.9 (2)	F4—C11B—F4D	22.6 (5)
C4A—C5A—C6A	121.0 (2)	F4B—C11B—F4D	128.4 (7)
С4А—С5А—Н5АА	119.5	F5—C11B—F4D	129.3 (6)
С6А—С5А—Н5АА	119.5	F6D-C11B-F4D	92.1 (8)
C1A—C6A—C5A	117.2 (2)	F6CC11BF4D	51.0 (7)
C1A—C6A—C7A	121.6 (2)	F5CC11BF4D	138.6 (6)
C5A—C6A—C7A	121.2 (2)	C4B—C11B—F4D	111.6 (5)
N1A—C7A—N2A	108.1 (2)	F5D-C11B-F6	118.0 (7)
N1A—C7A—C6A	111.3 (2)	F4C	20.4 (5)
N2A—C7A—C6A	108.7 (2)	F5B—C11B—F6	61.9 (8)
N1A—C7A—H7AA	109.6	F4—C11B—F6	103.4 (5)
N2A—C7A—H7AA	109.6	F4B—C11B—F6	77.1 (6)
С6А—С7А—Н7АА	109.6	F5—C11B—F6	98.9 (6)
N1A—C8A—C9A	109.0 (2)	F6D—C11B—F6	12.7 (7)
N1A—C8A—H8AA	109.9	F6C	129.9 (6)
С9А—С8А—Н8АА	109.9	F5CC11BF6	98.4 (6)
N1A—C8A—H8AB	109.9	C4B—C11B—F6	106.2 (3)
С9А—С8А—Н8АВ	109.9	F4D-C11B-F6	84.2 (6)
Н8АА—С8А—Н8АВ	108.3	C7B—N1B—C8B	111.1 (2)
C8A—C9A—C10A	109.3 (2)	C7B—N1B—H1NB	105 (2)
С8А—С9А—Н9АА	109.8	C8B—N1B—H1NB	109 (2)
С10А—С9А—Н9АА	109.8	C7B—N2B—C10B	110.9 (2)
С8А—С9А—Н9АВ	109.8	C7B—N2B—H2NB	106 (2)
С10А—С9А—Н9АВ	109.8	C10B—N2B—H2NB	109 (2)
Н9АА—С9А—Н9АВ	108.3	C2B—C1B—C6B	123.1 (2)
N2A—C10A—C9A	108.6 (2)	C2B—C1B—Cl1B	117.0 (2)
N2A—C10A—H10A	110.0	C6B—C1B—C11B	119.9 (2)
C9A—C10A—H10A	110.0	C3B—C2B—C1B	118.7 (3)
N2A—C10A—H10B	110.0	C3B—C2B—H2BA	120.6
C9A—C10A—H10B	110.0	C1B—C2B—H2BA	120.6
H10A—C10A—H10B	108.3	C2B—C3B—C4B	119.7 (3)
F2A—C11A—F3A	106.0 (2)	С2В—С3В—Н3ВА	120.2
F2A—C11A—F1A	106.4 (2)	С4В—С3В—Н3ВА	120.2
F3A—C11A—F1A	105.7 (2)	C5B—C4B—C3B	120.8 (3)
F2A-C11A-C4A	112.6 (2)	C5B—C4B—C11B	119.2 (3)
F3A—C11A—C4A	112.3 (2)	C3B—C4B—C11B	120.0 (3)
F1A-C11A-C4A	113.3 (2)	C4B—C5B—C6B	120.9 (3)
F5D-C11B-F4C	119.8 (7)	C4B—C5B—H5BA	119.6
F5D-C11B-F5B	120.0 (8)	С6В—С5В—Н5ВА	119.6

F4C	41.9 (7)	C1B—C6B—C5B	116.8 (2)
F5D-C11B-F4	93.2 (7)	C1B—C6B—C7B	121.8 (2)
F4C	83.0 (5)	C5B—C6B—C7B	121.4 (2)
F5B-C11B-F4	42.6 (8)	N2B—C7B—N1B	108.0 (2)
F5D—C11B—F4B	44.6 (8)	N2B—C7B—C6B	111.4 (2)
F4C—C11B—F4B	87.6 (7)	N1B—C7B—C6B	109.0 (2)
F5B—C11B—F4B	116.3 (8)	N2B—C7B—H7BA	109.5
F4—C11B—F4B	121.4 (6)	N1B—C7B—H7BA	109.5
F5D	24.3 (6)	С6В—С7В—Н7ВА	109.5
F4C—C11B—F5	107.5 (6)	N1B-C8B-C9B	108.4 (2)
F5B—C11B—F5	126.7 (7)	N1B—C8B—H8BA	110.0
F4—C11B—F5	113.6 (5)	C9B—C8B—H8BA	110.0
F4B—C11B—F5	21.9 (6)	N1B—C8B—H8BB	110.0
F5D-C11B-F6D	105.7 (9)	C9B—C8B—H8BB	110.0
F4C	28.3 (7)	H8BA—C8B—H8BB	108.4
F5B—C11B—F6D	69.8 (10)	C10B—C9B—C8B	110.0 (2)
F4—C11B—F6D	108.7 (8)	C10B—C9B—H9BA	109.7
F4B—C11B—F6D	64.5 (8)	С8В—С9В—Н9ВА	109.7
F5—C11B—F6D	86.2 (8)	C10B—C9B—H9BB	109.7
F5D-C11B-F6C	71.4 (8)	C8B—C9B—H9BB	109.7
F4CC11BF6C	109.8 (6)	Н9ВА—С9В—Н9ВВ	108.2
F5B—C11B—F6C	71.2 (8)	N2B—C10B—C9B	109.2 (2)
F4—C11B—F6C	28.7 (4)	N2B-C10B-H10C	109.8
F4B—C11B—F6C	111.2 (6)	C9B-C10B-H10C	109.8
F5—C11B—F6C	95.1 (6)	N2B-C10B-H10D	109.8
F6D—C11B—F6C	131.7 (8)	C9B—C10B—H10D	109.8
F5D-C11B-F5C	30.9 (8)	H10C-C10B-H10D	108.3
F4CC11BF5C	110.0 (7)	H1W1—O1W—H2W1	99 (3)
F5B-C11B-F5C	134.4 (7)	H1W2—O2W—H2W2	104 (3)
C6A—C1A—C2A—C3A	0.9 (4)	F4-C11B-C4B-C5B	36.6 (7)
Cl1A—C1A—C2A—C3A	-178.32 (19)	F4B-C11B-C4B-C5B	-161.8 (7)
C1A—C2A—C3A—C4A	0.6 (4)	F5-C11B-C4B-C5B	173.8 (7)
C2A—C3A—C4A—C5A	-1.1 (4)	F6D-C11B-C4B-C5B	-89.4 (8)
C2A—C3A—C4A—C11A	178.5 (2)	F6C-C11B-C4B-C5B	67.3 (6)
C3A—C4A—C5A—C6A	0.2 (4)	F5C-C11B-C4B-C5B	177.8 (5)
C11A—C4A—C5A—C6A	-179.4 (2)	F4D-C11B-C4B-C5B	12.4 (7)
C2A—C1A—C6A—C5A	-1.9 (4)	F6—C11B—C4B—C5B	-77.7 (4)
Cl1A—C1A—C6A—C5A	177.39 (18)	F5D-C11B-C4B-C3B	-34.1 (9)
C2A—C1A—C6A—C7A	178.7 (2)	F4C—C11B—C4B—C3B	120.7 (6)
Cl1A—C1A—C6A—C7A	-2.0 (3)	F5B-C11B-C4B-C3B	168.0 (8)
C4A—C5A—C6A—C1A	1.3 (3)	F4—C11B—C4B—C3B	-144.0 (6)
C4A—C5A—C6A—C7A	-179.3 (2)	F4B—C11B—C4B—C3B	17.5 (7)
C8A—N1A—C7A—N2A	-62.4 (3)	F5—C11B—C4B—C3B	-6.9 (8)
C8A—N1A—C7A—C6A	178.3 (2)	F6D-C11B-C4B-C3B	89.9 (8)
C10A—N2A—C7A—N1A	61.8 (3)	F6C—C11B—C4B—C3B	-113.4 (6)
C10A—N2A—C7A—C6A	-177.3 (2)	F5CC11BC4BC3B	-2.8 (6)
C1A—C6A—C7A—N1A	-153.3 (2)	F4D-C11B-C4B-C3B	-168.2 (7)
C5A—C6A—C7A—N1A	27.3 (3)	F6—C11B—C4B—C3B	101.7 (4)
C1A—C6A—C7A—N2A	87.8 (3)	C3B—C4B—C5B—C6B	-0.5 (4)

	$01 \in (2)$		CIID CAD CSD	CCD	179.0(2)
CJA-COA-C/A-N2A	-91.0(3)			—Сов	178.9 (3)
C/A—NIA—C8A—C9A	61.3 (3)		C2B—C1B—C6B-	-С5В	2.7 (4)
N1A-C8A-C9A-C10A	-57.6 (3)		Cl1B—C1B—C6B-	C5B	-176.75 (18)
C7A—N2A—C10A—C9A	-59.3 (3)		C2B—C1B—C6B-	С7В	-178.4 (2)
C8A—C9A—C10A—N2A	56.3 (3)		Cl1B—C1B—C6B-	—С7В	2.2 (3)
C3A—C4A—C11A—F2A	48.9 (3)		C4B—C5B—C6B-	–C1B	-1.3 (4)
C5A—C4A—C11A—F2A	-131.5 (3)		C4B—C5B—C6B-	С7В	179.7 (2)
C3A—C4A—C11A—F3A	-70.7 (3)		C10B—N2B—C7B	—N1B	62.4 (3)
C5A—C4A—C11A—F3A	108.9 (3)		C10B—N2B—C7B	—С6В	-178.0 (2)
C3A—C4A—C11A—F1A	169.7 (2)		C8B—N1B—C7B-	–N2B	-63.0 (3)
C5A—C4A—C11A—F1A	-10.7 (3)		C8B—N1B—C7B-	C6B	175.8 (2)
C6B—C1B—C2B—C3B	-2.1 (4)		C1B—C6B—C7B-	–N2B	154.7 (2)
Cl1B—C1B—C2B—C3B	177.29 (19)		C5B—C6B—C7B-	–N2B	-26.4 (3)
C1B-C2B-C3B-C4B	0.2 (4)		C1B—C6B—C7B-	N1B	-86.3 (3)
C2B—C3B—C4B—C5B	1.0 (4)		С5В—С6В—С7В-	N1B	92.6 (3)
C2B—C3B—C4B—C11B	-178.3 (3)		C7B—N1B—C8B-	—С9В	60.2 (3)
F5D-C11B-C4B-C5B	146.6 (9)		N1B—C8B—C9B-	C10B	-56.1 (3)
F4CC11BC4BC5B	-58.6 (7)		C7B—N2B—C10B	—С9В	-59.7 (3)
F5B-C11B-C4B-C5B	-11.4 (9)		C8B—C9B—C10B	—N2B	56.0 (3)
Hydrogen-bond geometry (Å, °)					
D—H…A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1A—H1NA…O1W ⁱ		0.90 (3)	2.07 (4)	2.885 (3)	151 (3)
N1B—H1NB…Cl1A ⁱⁱ		0.89(3)	2,76(3)	3 595 (2)	156 (2)

N1B—H1NB…Cl1A ⁱⁱ	0.89 (3)	2.76 (3)	3.595 (2)	156 (2)	
N2B—H2NB···O2W	0.84 (3)	2.18 (4)	2.969 (3)	156 (3)	
O1W—H1W1···N2B ⁱⁱⁱ	0.86 (4)	1.95 (4)	2.815 (3)	174 (4)	
O1W—H2W1···N2A ^{iv}	0.87 (4)	2.02 (3)	2.867 (3)	165 (3)	
O2W—H1W2···N1B ^v	0.83 (3)	2.09 (3)	2.891 (3)	161 (3)	
O2W—H2W2···N1A ^{vi}	0.87 (4)	1.98 (4)	2.844 (3)	176 (4)	
C2A—H2AA···O2W	0.93	2.35	3.249 (3)	164	
C5A—H5AA…F1A	0.93	2.42	2.747 (3)	100	
C5A—H5AA···N1A	0.93	2.52	2.835 (3)	100	
C7A—H7AA…Cl1A	0.98	2.67	3.076 (3)	105	
C2B—H2BA····O1W ^{iv}	0.93	2.52	3.414 (3)	162	
C5B—H5BA…N2B	0.93	2.53	2.838 (3)	100	
C7B—H7BA…Cl1B	0.98	2.68	3.070 (3)	104	

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) x, -y+1/2, z-1/2.

Fig. 2

Fig. 3

